Ir arriba
Información del artículo en conferencia

The Hinges model: a one-dimensional continuous piecewise polynomial model

E.F. Sánchez-Úbeda, L. Wehenkel

7th Information Processing and Management of Uncertainty in Knowledge-Based Systems - IPMU 1998, París (Francia). 06-10 julio 1998


Resumen:

In this article we propose an efficient approach to flexible and robust one-dimensional curve fitting under stringent high noise conditions. This is an important subproblem arising in many automatic learning tasks. The proposed algorithm combines the noise filtering feature of an existing scatterplot smoothing algorithm (the Supersmoother) with the flexibility and computational efficiency of piecewise linear hinges models. The former is used in order to provide a first approximation of the noise in the data, in a pre-processing step. Then, the latter are used in order to provide a closed form approximation of the underlying curve and further to reduce bias of the Supersmoother thanks to an efficient refitting algorithm, using updating formulas. The proposed technique is assessed on a synthetic test problem and one closer to real world data.


Palabras clave: Automatic learning, regression analysis, piecewise polynomial models


Fecha de publicación: 1998-07-06.



Cita:
E.F. Sánchez-Úbeda, L. Wehenkel, The Hinges model: a one-dimensional continuous piecewise polynomial model, 7th Information Processing and Management of Uncertainty in Knowledge-Based Systems - IPMU 1998, París (Francia). 06-10 julio 1998.


    Líneas de investigación:
  • *Predicción y Análisis de Datos

pdf Solicitar el artículo completo a los autores